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In this study the material damping of laminated composites is derived analytically. The deriv- 
ation is based on the classical lamination theory in which there are eighteen material constants 
in the constitutive equations of laminated composites. Six of them are the extensional stiff- 
nesses designated by [A] six of them are the coupling stiffnesses designated by [B] and the 
remaining six are the flexural stiffnesses designated by [D]. The derivation of damping of [A], 
[B] and [D] is achieved by first expressing [A], [B] and [D] in terms of the stiffness matrix 
[Q](k) and hk of each lamina and then using the relations of Q~k) in terms of the four basic 
engineering constants E,, ET, GLT and VLT. Next we apply elastic and viscoelastic correspon- 
dence principle by replacing EL, ET . • • by the corresponding complex modulus E~, E~ . . . . .  
and [A] by [A]*, [B] by [B]* and [D] by [D]* and then equate the real parts and the imagin- 

t t  / M t # ary parts respectively. Thus we have expressed A~, Aij, Bij, Bij and D;i, Dii in terms of the 
material damping r/{L k) and r/(T k) . . . of each lamina. The damping ~(.k) r/(T k) . . . have been derived 
analytically by the authors in their earlier publications. Numerical results of extensional damp- 
ing ~r/;j = A;~/A~. coupling damping or/;/= B'JE/B~. and flexural damping Fr/; i = DTj/D'iE are presented 
as functions of a number of parameters such as fibre aspect ratio I/d, fibre orientation 0, and 
stacking sequence of the laminate. 

1. In troduct ion  
Damping is a kind of energy dissipation. For fibre 
reinforced composites, damping may be primarily due 
to one or a combination of the following mechanisms 

(a) viscoelastic behaviour of matrix and/or fibres 
(b) thermoelastic damping due to cyclic heat flow 
(c) coulomb friction due to slip in unbonded 

regions of the fibre-matrix interface. 
(d) dissipation caused by microscopic or macro- 

scopic damage in the composite. 

The first two mechanisms are the basic causes of 
damping for undamaged composites. The objective of 
this research is to determine analytically the damping 
of laminated polymer matrix composites. 

During the past two years, the authors have engaged 
in research in damping for composite materials both 
analytically and experimentally. During the course of 
research we have successfully developed analytical 
methods to predict internal material damping for uni- 
directional composites [1], unidirectional off-axis 
composites [2, 3] and randomly oriented short-fibre 
composites [4, 5]. 

There are two analytical methods which have been 
employed by the authors. The first method is to use 
the force-balance approach in conjunction with Cox's 
shear-lag analysis [6] to derive the expression for the 
elastic modulus EL along the fibre direction of uni- 
directional aligned short-fibre composites. Then the 
elastic-viscoelastic correspondence principle is used to 
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obtain the expression for the complex modulus EI*. 
The complex equation for E* then becomes two real 
equations for storage and loss moduli. The material 
damping is obtained as the ratio of the loss modulus 
to the storage modulus. 

The second method is the energy approach. In this 
approach the energy stored in the fibre and matrix, 
and energy dissipated due to interracial shear stresses, 
are used to find the values of storage as well as loss 
moduli. 

By using these approaches, we have obtained 
numerical results for damping of unidirectional 
aligned short-fibre composites, unidirectional off-axis 
short-fibre composites and also randomly oriented 
short-fibre composites. Important parameters which 
will affect damping are also identified as stiffness ratio 
Er/Em, fibre volume fraction Vf, loading angle 0, fibre 
aspect ratio lid and damping of the fibre and matrix 
materials t/f and ~/m- 

In this paper the internal material damping of lami- 
nated composites is studied analytically. In this study, 
the force-balance approach is used. In the force- 
balance approach we apply the classical lamination 
theory to obtain the [A], [B] and [D] stiffness matrices 
[7]. Damping in laminated composites can therefore 
be classified as in-plane damping which is defined as 
the ratio of A~ loss to A 0 storage, i.e. A~/A~ coupled 
damping defined as B,j loss to B~ storage, i.e. B~/B~ and 
flexural damping defined as the ratio of D~ loss to Dij 
storage, i.e. D~/D~ (i,j = 1, 2, 6). Aij, B o, and D~j are 
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functions of  :)~) of each lamina which are in turn ~..tj 

functions of  the four basic engineering material con- 
stants EL, ET, GET and vex and the angle 0. Therefore, 
the material damping of  laminated composites can be 
obtained from the definition of  A/g, B,j and D o and the 
elastic-viscoelastic correspondence principle in the 
following form 

N 

A* = A~ + iA~ = ~ (0~ + iQ~)(k)(hk -- hk-1) 
k= l  

, 1 N -,r~tM(k) ,'~2 
B* = B~: + iB~ = ~k~==l (o~ + t~:) ( n k -  h~_l) 

D* = D~ + t'D~ = -j (Q~ + iQ_.~)(k~(h 3 - h3_l) 
k= l  (1) 

~__  , ,, where i = 1 and both Qu and Qu, are functions of 
E£, E~, G~T, E£', E-~ and GE"T. The expressions for E£, 
E£', E~-', E~, G~T and G{T have been derived in [2, 3] by 
the authors. 

The material damping in laminated composites is 
therefore expressed as 

~(in-plane) . , l,lij = Aij/Ai: 
rl!coupled) t/ , c.,,: = B~/Bij (i, j = 1, 2, 6) (2) 
~(flexuraI) u v't~ = D~./D~ 

:! i H / t /  / where Ao, Ao, B~, By, D o and D o are defined in 
Equation 1 in terms of  Q'(~, Q"(]) and the position hk 
relative to the mid-surface. For symmetric laminates 
B o = 0 and c.lt 3r/(c°upled) also vanish. 

2. A n a l y s i s  
The relations between Q,j (i, j = 1, 2, 6) and the four 
basic engineering constants are given by the well- 
known formulae 

EL 
O i l  = 

1 - (VLT)~ET/EL 

VLTET 
Q12 = 1 - (VLT)2ET/EL (3) 

ET 
Q22 

1 - -  (VLT)2E~EL 

where 

Q66 = GLT 

EL = EfVf(1 + R) [1 ~ Tanh(fl l /2)] 
J 

~- E m ( V m - -  w f g )  ( 4 )  

and R is the fibre tip spacing/fibre length (see Fig. 1) 

f l L  = 41/d Gm 1 
In ~/4Vf (5) 

l + 2t / iV f 
E T = E m (6) 

1 - -  t/1Wf 

1 + t / 2 ~  
GET = G m -  (7) 

1 - t/2Vf 

YLT = vfVf "~ VmVm (8 )  

Er/E m - 1 
t/l = (9) 

Ef /E  m + 2 

Figure 1 Aligned short fibre composites. 

G r / G ~ -  1 
t/2 = ( l O )  

G f / a m  + 1 

Equations 4 and 5 are obtained from Cox's shear lag 
model [6] and Equations 6 and 7 are well-known 
Halpin-Tsai equations. If  we consider both fibre and 
matrix materials are viscoelastic materials, then in 
Equations 4 through 8 we have to replace EL by E*, 
Ef by El* i.e. 

E* = EL(1 + it/L) 

= E~il + it /r)~R 

+ Era(1 + it/m)(Vm -- VfR) 

fl*L = fl'L + ifl'~ = 4L/d  

1 tanhfl*l/2 ] 
fl*l/2 J 

(11) 

Gin( 1 + it/raG) 1 

Er(1 + /t/f) In r~/4Vr 

(12) 

1 + 2t/*Vf 
ET(1 + it/T) = Era(1 + it/m) 1 -- t/l*Vf (13) 

1 + t/~'v~ 
GLT(1 + it/LT) = Gin( l + it/mG) 1 - t/*V~ (14) 

VET(1 + it/vLr) = Vr(1 + it/~r)Vf + Vm(1 + it/vm)Vm 

(15) 
Upon separation of real and imaginary parts in 
Equations 11 through 15 and equating the real parts 
and the imaginary parts respectively we can derive the 
damping coefficients t/L, t/T, t/GET, and t/~LT' i.e. damp- 
ing along the longitudinal direction, damping along 
the transverse direction, shear damping and damping 
of  Poisson's ratio for the unidirectional composites in 
terms of El~Era, Gf/Gm, t/f, t /m , fibre aspect ratio l/d, 
fibre tip spacing R, fibre volume fraction Vf and fibre 
orientation angle 0. The expressions of  t/x, t/GET can be 
found in the authors earlier publications [1-3]. The 
derivation of  the real and imaginary parts of the 
Poisson's ratio was based on observation by Gibson 
and Plunkett [8] that the bulk modulus K is indepen- 
dent O f frequency. With this observation, for isotropic 
fibre and matrix materials we can easily derive the real 
part and the imaginary part of  the Poisson's ratio 
respectively with the result 

v' = 1/2 1 -  

g # 

v" = - 1 / 2 ~ - ~  (16) 
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Figure2 Plots of D~L/D m and 
FT/II/~Tm against Lid for quasi- 
isotropic graphite epoxy com- 
posites. 

Substitution of Equations 12 through 15 yields the 
expressions of 

Q*I = Q~, + iQ~'~ 

Q*2 = Q22 + iQ2"2 
(17) 

/ • tt 
Q*2 = Q,2 + tQ12 

Q*6 = G*T = GET(1 + i//acv) 

in terms of  Ef/E~,  ttf, //~, V~, l id and R. The detail 
expressions Q~, . . . Q~6 are too lengthy to be pre- 
sented in this paper, but the derivation is straight 
forward. 

Since [A], [B] and [D] are functions of 0~ and Q~ 
(i, j = 1, 2, 6) which are related to Q~j by the follow- 
ing relations [7] 

QI1 = Qll cos40 -k- Q22 sin40 

+ 2(Q12 + 2Q66)sin20 cos20 

(~26 = (QII - QI2 - 2Q66)cos 0 sin30 

- (Q22 - QI2 - 2Q66)cos30 sin 0 (18) 

the expressions of  

A* = A~(1 + i~//ij) 

fl* = flo.(1 + ict/ij) (i, j = 1, 2, 6) (19) 

D* = D~(1 + iF//0) 

can be derived from Equations 1, 3 and 4 through 16. 
Again the expressions are too lengthy to be given here. 
Numerical results of A'l, A~6, D*~ and D~'6 are pre- 
sented in the next section as functions of the stacking 
sequence, fibre aspect ratio I/d, fibre tip spacing R and 
fibre volume fraction Vf. 

3 .  N u m e r i c a l  r e s u l t s  
The important quantities to be presented are: 

lq~ = extensional damping along the direction 1 
E~ = extensional storage modulus along direc- 

tion 1 
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1//66 ~-  

E~6 = 
F / / l l  

D;1 = 

F/ /66  

O~, 6 = 

in plane shear damping 
in plane shear storage modulus 
flexural damping about the axis 1 
flexural storage modulus along direction 1 
flexural shear damping 
fluxural shear storage modulus 

Numerical results of the above quantities are pre- 
sented in Figs 2 to 11 in normalized nondimensional 
form. 

In Figs 2 and 3 F//t~, D~t, F//66 and D;6 of  quasi- 
isotropic graphi te-epoxy composites are plotted as a 
function of the fibre aspect ratio l/d. Four different 
stacking sequences are included. The results are not 
surprising. Under flexural loading, the bending stiff- 
ness D~I is the highest when 0 ° ply is placed on the top 
and bottom surfaces of the laminate and becomes the 
lowest when 0 ° ply is located in the midsurface of the 
laminate. For  D;6 the situation is just the opposite. It 
is maximum for a given l /d for the laminate with + 45 ° 
plies on the top and bottom and is minimum with 
+45 ° plies on the midsurface. The behaviour of 
damping is just opposite to the corresponding stiff- 
ness. This observation is clearly indicated in Figs 2 
and 3, i.e. D~l and 0;6 increase as l id increases and vrhi 
and FT~66 decrease as l id increases. 

Figs 4 to 7, show the four in-plane extensional 
properties i.e. E(~, 1//1~, E66 and 1//66 of angle-ply 
graphi te-epoxy as a function of  the ply angle 0. Maxi- 
mum E(~ occurs at 0 ° and drops sharply as 0 increases 
and reaches to the same value as 0 = 90 ° for all value 
of lid. This is true since when 0 = 90 °, El'l approaches 
to E4 which is assumed to be independent of the fibre 
aspect ratio l/d. The maximum value of I//H depends 
on the stacking sequence. This observation was also 
noticed in the authors previous publications [2, 3] for 
unidirectional composites. Again at 0 = 90 °, F/l~ 
reaches the same value regardless of the value of  l/d. 

Eg6 and 1/]66 behave just the opposite with the excep- 
tion that both plots are symmetric with respect to the 
vertical line of  0 = 45 °. Maximum E~6 occurs at 
0 = 45 ° and larger fibre aspect ratio and maximum 
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Figure 3 Plots of D'661Dc, m and 
vqs61rlom against Lid for quasi- 
isotropic graphite epoxy com- 
posites. 

Figure 4 Plots of E;I/E m against 0 
using L/d as a parameter for angle 
ply graphite epoxy composites. 
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Figure 5 Plots of i r/i 1/qm against 0 
using L/d as a parameter for angle 
ply graphite epoxycomposites. 
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Figure 6 Plots of E~6/G ~ against 0 
using L/d as a parameter for 
angle ply graphite epoxy com- 
posites. 

Figure 7 Plots of I~66/~Gm against 
0 using L/d as a parameter for 
angle ply graphite epoxy com- 
posites. 
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Figure 8 Comparisons of D'll/D~ 
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nated graphite epoxy composites. 
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Figure 9 Comparison of F?/ll/~m 
against L/dfor four kinds of lami- 
nated graphite epoxy composites. 

Figure 10 Comparisons of D~66/ 
D~m against Lid for four kinds of 
laminated graphite epoxy com- 
posites. 
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Figure 11 Comparison of F~66/ 
~Gm against Lid for four kinds of 
laminated graphite epoxy com- 
posites. 
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IT/66 also occurs at 0 = 45 ° but smaller fibre aspect 
ratio. 

Figs 8 to 11, show plot of D'll, Vqll, D66 and Fq66 of 
laminated graphite-epoxy composites with four dif- 
ferent stacking sequences as a function of lid. No 
surprising results were observed. The trend is always 
the same, i.e. materials with higher damping will have 
lower stiffness and vice versa. For instance 08 lami- 
nate has maximum D;1 and minimum D;6 and [45/-45/ 
45/-4512s laminate has maximum D;6 and minimum 
D'I~. But for dampings, i.e. for Fr/~l and Fq66 these 
trends are just reversed. 

4. Concluding remarks 
Analytical prediction of extensional stiffness and 
damping in-plane shear stiffness and damping, 
flexural stiffness and damping and flexural shear stiff- 
ness and damping of laminated composites were 
obtained from the classical theory of lamination along 
with the elastic-viscoelastic correspondence principle 
and separation of the real and imaginary parts. 
Numerical results for laminated composites indicate 
similar trends as observed in the unidirectional com- 
posites, i.e. damping and stiffness always behave in 
opposite manners. Designers, thus, should make some 
compromise in order to achieve optimum perfor- 
mance of composite structures. 

Finally the above analysis does not take into 
account the contribution of the interlaminar stresses. 
A three-dimensional model by using the finite-element 
approach include the influences ofinterlaminar stresses 

has been developed and the results will be published in 
the near future. 
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